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REYNOLDS STRESS AND THE PHYSICS OF TURBULENT
MOMENTUM TRANSPORT

1. Introduction

A fundamental objective to which much research in turbulence is ultimately directed

is to explain the nature of the transport process in turbulent shear flow culminating

in the Reynolds stress. With such knowledge, the goal of developing a comprehensive

closure scheme for use in prediction of turbulent flows may be significantly advanced.

Perhaps the first comprehensive attempt at explaining the existence of Reynolds stress was

given in Prandtl's (1925) mixing-length theory. In this, Prandtl proposed that Reynolds

stress reflects the net transport of momentum across a plane arising from the random

movement of fluid particles in the presence of a mean shear. In essence, eddies of fluid

carry, unchanged, the average momentum of their original location to their destination a

mixing length away. Since the mean velocity is nonconstant, its difference between the

initial and final locations of a particle correlates with the direction of travel, so that a

momentum flux and consequently Reynolds stress is created. On the proviso that the

mixing length should be relatively small, Frandtl used this physical model to justify the

representation of Reynolds stress in the form of a gradient law.

For the purposes of the present work it is useful to make a distinction between the

physical idea advanced by Prandtl regarding the physics of momentum transfer and the

deduction of a gradient transport law from it. Some elements of the former undoubtedly

have considerable merit, while the later step is of questionable validity. For example,

Corrsin (1974) effectively showed that the mixing length must ordinarily be of the same

scale as that of significant variation in the mean velocity field. As a consequence, the

assumption that the mixing length is small is not tenable except in unusual cases. The

occurrence of such anomalous flows as a wall jet (Hinze 1975, p. 580) and transpired

channel (Piomelli, Moin & Ferziger, 1989) and the less than satisfactory performance of

gradient closure schemes in the computation of complex flows (Lakshminarayana 1986)

provide additional evidence to prove the inadequacy of the gradient model.

amro approved May 10. 1990.



Since the work of Prandtl much effort has been expended in deriving methods for

estimating the mixing length or eddy viscosity (Hinze 1975). Empirical and dimensional

arguments have been applied in these developments which largely skirt direct considera-

tion of physical mechanisms. Beyond the scope of Prandtl's theory, the primary focus in

explaining Reynolds stress heas relied less on consideration of fundamental physics than on

the postulation of constitutive forms of the Reynolds stress tensor (Lumley 1983). These

pursue the use of appropriate invariance principles to guide the development of formal

mathematical constructions. In some theories (Speziale 1987) these go well beyond the

framework of the gradient model. While such approaches bring into play a wealth of phys-

ical ideas of turbulent flow, these are often not directly involved with the mechanisms of

momentum transport.

In recent times considerable attention has also been paid to exploring the phenomeno-

logical properties of coherent motions in the turbulent wall region (Wallace 1985; Robin-

son, Kline & Spalart 1988). In effect, any progress in this area should be of considerable

importance toward explaining the physics of Reynolds stress, since burst and sweep events

in turbulent boundary layers, which are a manifestation of the presence of vortical struc-

tures, are intrinsically associated with the turbulent transport of momentum. On the

surface, such motions would appear to be one aspect of the kind of transport process

described by Prandtl. However, if one is to obtain a practical recipe for the prediction

of Reynolds stress from knowledge of such mechanisms, then much greater precision re-

garding the particulars of the coherency and how it relates to the instantaneous Reynolds

stress is required. This is an area which current analyses of coherent structures have yet

to treat in great depth.

In consideration of the large extent to which turbulent transport processes depend

upon the dynamics of fluid particle motions, it may be expected that there is considerable

benefit to taking the Lagrangian perspective in the analysis of Reynolds stress. This point

of view was taken very early on by Taylor (1932) in a related study of vorticity transport.
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Over the years, several analyses of particle trajectories in shear flows have been made

(Deardorff & Peskin 1970; Peskin 1974), though these have been limited by the technical

difficulties of obtaining Lagrangian data. Recently, however, with the development of

direct numerical simulations of turbulent flow as a practical tool, it has become possible

to study the Lagrangian statistics of particle motions to any desired extent.

A recent study (Bernard, Ashmawey & Handler 1989a,b) has demonstrated the poten-

tial for explaining the physics of Reynolds stress which may be had from the analysis of

particle paths in turbulent flow. The mechanisms for momentum transport were investi-

gated at the point y+ = 15.8 in the wall region of channel flow, by using ensembles of com-

puted particle paths to evaluate a Lagrangian decomposition of the Reynolds stress into

component physical processes. Some limited results were also obtained further from the

wall at y+ = 37.5. It was found that the gradient mechanism over-predicts the Reynolds

stress at y+ = 15.8. In compensation, significant positive contributions to Reynolds stress

came from non-gradient transport processes reflecting the inadequacies of a local linear

approximation to the mean velocity field, and the influence of pressure and viscous forces

in changing the momentum of particles along their paths. To connect these results to the

phenomenological aspects of boundary layers, the paths contributing most significantly

to instantaneous Reynolds stress were visualized. Such paths, which were also implicated

as the source of non-gradient transport, tended to be highly vortical with generally large

displacements in the wall-normal direction.

The success of the Lagrangian technique in investigating momentum transport at

primarily a single point, has prompted interest in applying the technique throughout the

wall region with the intent of developing a comprehensive description of the physics of

momentum transport in the turbulent boundary layer. In particular, it is of interest to

map out the relative trends of gradient and non-gradient effects across the wall layer and

to find an explanation for these in terms of the particular motions of fluid particles. The

insights provided by this analysis can be of considerable benefit in the construction of
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Reynolds stress models and in tying the presence of coherent structures to the formation

of Reynolds stress.

The present study incorporates a greatly expanded data base of particle paths in

pursuit of these objectives. Six ensembles of particle trajectories are obtained which

have terminal points at six locations in the region encompassing 0 _< y+ < 40, where

Y + = Uy/v, y is the distance from the wall, U, is the friction velocity, and v is the

kinematic viscosity. With the view afforded by this data a fairly complete picture of the

origins of Reynolds stress in the wall region emerges. It is shown that it is most natural to

consider the Reynolds stress as originating from two physical mechanisms encompassing

the effects of dispacement and acceleration of fluid particles. The former, which is the

more significant of the two, corresponds to the process envisioned by Prandtl in which

transport occurs through displacements of fluid particles without a change in momentum.

A principal result of the study is to show that one point models, such as the gradient

transport law, are incapable of describing this process, so that it is inappropriate to view

the Reynolds stress as arising from primarily a gradient mechanism supplemented by

non-gradient corrections. Furthermore, it will be shown that the displacement transport

process as a whole has a natural representation in terms of a global integral of the mean

velocity gradient.

The second fundamental process affecting the Reynolds stress entails systematic ac-

celerations and decelerations of fluid particles brought about by the influence of pressure

and viscous forces. Close to the wall this involves the deceleration of sweep events re-

sulting in a reduction of the total Reynolds stress. Further from the wall Reynolds stress

is produced when fluid particles decelerate or accelerate while changing direction. The!se

motions appear to be largely disjoint from those most responsible for displacement trans-

port, though both sources of Reynolds stress may be manifestations of vortical structures

containing a significant streamwise vorticity component.

The next section provides background on the method of Lagrangian analysis employed
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in the study. Following this the- computational aspects of the approach including that of

the channel flow simulation and particle data sets is given. The chief results concerning

the physics of Reynolds stress are then presented including the evaluation of the trans-

port decomposition and descriptions of the typical fluid particle motions in the wall region

leading to dispacement and acceleration transport. An overall assessment of the mecha-

nisms leading to momentum transport is then made and some of the implications of this

for the modeling of Reynolds stress are described. In the last section conclusions are given

together with an outline of future work.

2. Reynolds stress analysis

A Lagrangian decomposition of the Reynolds shear stress, VU7, at a fixed spatial point,

a, at a given time, t,, in a turbulent channel flow may be derived following an approach

presented in detail elsewhere (Bernard, et al. 1989a, b). In essence, one substitutes for u

an expression deduced from integrating the streamwise component of the Navier-Stokes

equation along an arbitrary particle path terminating at a, at time t.. Denoting the initial

point of the path at time t. - r, r > 0, as b, which will vary randomly from realization

to realization of the flow field, the decomposition takes the form

UV = ubV + Va(Ub -U.) - V(O) (S) ds + vv(O)V 2U(s)ds. (1)

Here, u is the streamwise and v the wall-normal velocity fluctuations, U is the total

streamwise velocity, p the pressure, p the density, the subscripts a and b denote quantities

evaluated at a, t. and b, t.-r, respectively, and the overbar indicates ensemble averaging.

The notation, U(s), is adopted to indicate quantities evaluated along the particle path at

time s, and, without loss of generality, t. is considered to be 0.

The further step may be taken of substituting for Ub in (1) its Taylor series expansion

v(s)ds f(a)+ d 2Vr (2)

, -2 v (s)v (r) ds dr-y2( ),'2
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where for each realization of the flow field, 0 denotes a different point on the path between

b and a. This yields

0 d7J
= U.. - J v(O)v(s)ds T + 01 + (3)

where

4 , - -f l O (s) ds +f vv(O)V 2 U(s)ds (4)

and

42-" -- () L_" f v(O)v(s)v(r)dsdr. (5)

As r increases, the magnitude of the first term on the right-hand side of (3) reduces to

zero as was demonstrated in earlier work (Bernard et al. 1989a,b). The second term on

the right-hand side accounts for mean gradient diffusion of momentum. It contains an

explicit expression for the eddy viscosity in the form

VT =1 v(O)v(s)ds, (6)

which, in view of the properties of v(O)v(s), will be positive. The terms 4) and t2,

defined in (4) and (5), respectively, represent non-gradient transport processes which are

potentially important sources of Reynolds stress. The previous study found both of these

to be significant at the point y+ = 15.8. Term 4t represents Reynolds stress arising from

a correlation between the fluctuation v. and changes in the momentum of fluid particles,

i.e., accelerations or decelerations, caused by the action of pressure and viscous forces.

The remaining term, t2, reflects a correction to gradient transport caused by the motion

of fluid particles over distances greater than that at which a local linear approximation

to U can be justified.

Implicit in the early analysis of Prandtl is the concept of the mixing time, i.e., the time

period over which particles must travel until their momentum is in some sense blended

in with the surroundings. The existence of a mixing time is also fundamental to the

present approach. It was suggested previously (Bernard, et al. 1989a) that this scale
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may be naturally associated with the time interval r until ub and v. become uncorrelated,

i.e., U&-v = 0 in (3), since it takes this long for the dynamical processes of the flow

field to create, in a sense, the Reynolds stress correlation. A closer inspection of (3),

however, suggests that a more fundamental definition of mixing time may be discerned.

In particular, it may be seen that there must be a threshold in r beyond which all of the

terms in (3) are constants independent of r. To see this, note that as r increases, v(0)

and v(r) becomes less correlated so that eventually vr given by (6) becomes constant and

so too the gradient term in (3). Similarly, the correlation of v(0) with 9p/z(-r) and

V 2 U(-r) will be zero after r exceeds a certain lower bound. In this case t, will then

be constant. Clearly, the remaining term, $2, will be constant once r is large enough to

make all the other terms constant. The time, say r, when this is first achieved may be

taken as a precise definition of the mixing time. This scale is intrinsic to the turbulent

flow field at any point. For r > r", (3) produces a fundamental decomposition of the

Reynolds stress into its constituent physical processes. By examining these, it is possible

to learn a considerable amount about the physics of turbulent momentum transport and

the Reynolds stress.

Equation (3) was derived from the point of view of specifically identifying a term

responsible for gradient transport. This required applying (2) so as to subdivide the

correlation v.(TUb -U .) into gradient and non-gradient components. This step is a math-

ematical artifice which is not necessarily beneficial either to representing the physics of

the Reynolds stress, or as an aid to its modeling. In fact, it will become apparent below

that formula (1), which may be rewritten in the form

UV = -- + Va(Ub - U.) + V.(Uo - Ub), (7)

since the last term is just 4b, permits a more natural and straightforward analysis of

the Reynolds stress than does (3). This equation will be seen to offer some important

conceptual advantages in explaining the physics of turbulent momentum transport, and
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in developing closure relations.

Equation (7) suggests that the Reynolds stress should be looked at as arising from

two fundamental processes. The first, which is encompassed by the middle term on the

right-hand side, is just the transport mechanism described by Prandtl, wherein v. is

correlated with the change in the mean velocity between a fluid particles' initial and final

location. Intrinsic to this term is the idea that the velocity fluctuation u. arises simply

from the fluid particle at point b bringing to point a, on average, the mean momentum

of its starting location. For the purpose of the following discussion this transport mode

will be referred to as transport by fluid particle displacements. It has been pointed out

by Tennekes and Lumley (1972) that this mechanism, as it was envisioned by Prandtl,

suffers from the contradiction of requiring both complete mixing at the end of the mixing

time, yet also transfer of momentum unchanged from one position to another. It should

be apparent that (7) offers a framework for sorting out this paradox, since, within the

context of continuous changes in the momentum of fluid particles, it allows for both the

notion of complete mixing as discussed above, as well as diffusion according to Prandtl's

conception.

A very different type of transport is represented by the last term in (7). This incor-

porates the correlation of v. with the total change in momentum along particle paths,

i.e., the acceleration and deceleration of fluid particles. Consequently, it will be conve-

nient to refer to this effect as transport associated with fluid particle accelerations. The

suggestion that this type of transport may be significant was put forth by Taylor (1915)

as a reason for rejecting a gradient transport model of the kind which was later to be

developed by Prandtl. It is evident from (3) that both viscous and pressure forces acting

either separately, or in concert, can potentially contribute to acceleration transport.

The two transport mechanisms represented in (7) may, in principle, be of significance

at a particular point ir the flow independently of one another. Displacement transport

should occur generally in the presence of a mean shear, while the circumstances under
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which acceleration transport should exist is less obvious. An important outcome of the

present study will be to reveal some of the occasions when the latter will be of consequence.

In general, it will be shown that different types of particles motions are associated with

eac. of the transport mechanisms, though they may have a common origin in the dynamics

of vortical structures in the turbulent wall layer.

3. Computational technique

The particle trajectories used in the present study were obtained from a direct numer-

ical simulation of channel flow at Reynolds number P, = 250, based on friction velocity

and channel width. In terms of the centerline velocity the Reynolds number is 4274. A

relatively low value of R, was chosen with a view toward obtaining an acceptable sim-

ulation on a mesh with fewer points than would be needed at higher values of R. In

particular, for the present study a grid with 32 x 65 x 64 mesh points in the streamwise,

wall-normal and spanwise directions, respectively, was used. By so reducing the storage

requirements necessary to hold each realization of the velocity field in computer memory,

the manageability of computing particle paths backward in time was enhanced.

The turbulent field was simulated by solving the Navier-Stokes equations in rotation

form subject to the incompressibility condition and no slip boundary conditions. A forcing

term in the momentum equation was chosen in such a manner as to act like a constant

pressure gradient driving the flow to a statistically steady state. Numerical solutions to

the governing equations were obtained using a pseudospectral method in which Chebyshev

polynomials are used in the wall normal direction, and Fourier series in the streamwise

and spanwise directions.

A time splitting scheme incorporating the Green's function approach developed by

Marcus (1983) was employed to obtain numerical solutions. This technique is a modi-

fication of the Orszag-Kells (1980) algorithm in which time splitting errors inherent in
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that method are significantly reduced by forcing a divergence free velocity field at the

wall. The code that has been used for the current calculations was originally written

by John McLaughlin (Azab & McLaughlin 1987) and has been extensively modified to

make it more memory efficient. The present calculations were initialized from a previous

simulation which was known to be nearly statistically steady. Dealiasing of the computed

solution was done in the horizontal wavenumber plane using the '3/2' rule so that each

of the 64 x 16 complex modes in the horizontal plane was fully populated. The domain

size in wall units was 625 in the streamwise and spanwise directions and 250 in the wall

normal direction. The mean properties of the computed velocity field were comparable in

quality to that of other simulations. For example, the constants A and B in the expression

for the law of the wall, "7" = A In y+ + B, were found to be 2.5 and 5.5, respectively, and

the ratio of centerline to bulk mean velocity was 1.17 compared to 1.18 found by Kim,

Moin & Moser 1987. Details of the channel flow solution have been reported elsewhere

by Handler, Hendricks & Leighton 1989.

The ensembles of paths used in the current study consist of the trajectories of 1000

particles with end points on each of the six planes y+ = 3.8,7.3,12.0,17.8,24.6, and

36.6. In each case, 500 particles were obtained from the flow in the lower half of the

channel and 500 in the upper half. The total simulation time of the paths was r+ = 32.

They were computed by first storing 640 consecutive realizations of the velocity field on

magnetic tapes and disk files at intervals At + = AtU,?/v = .05. The final positions of

the particles were randomly placed in the planes and the particle locations earlier in time

were determined by integration through the velocity realizations taken in reverse order.

A second order Runge-Kutta scheme was used to perform the time integration.

The accuracy of the paths was assessed by computing the motion of all the parti-

cles from their positions at time t+ = -Tr+ forward in time over the identical 640 flow

records until t+ - 0. Denoting the backward and forward paths by Xb(a, t) and X1 (a, t),

respectively, then by definition, Xb(a, 0) = a and X1 (a, -r+) = Xb(a, -r+). The root-
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mean-square difference

-+= I X,(a,t + - +)-X(a t+ - +)I ,

where N = 1000, between the backward and forward positions of the particles was cal-

culated. Figure 1 contains a plot of c(t*) for each y+ level as a function of time. It is

seen that on average the particles return to within a very small distance of their starting

points. For example, in the worst case, which is for the paths which end at y+ = 36.6,

the root-mean-square error is < 0-4 as measured in viscous units. It is also evident that

these errors are rapidly increasing with time so that for longer time intervals they may

become significant.

An additional source of error in the particle paths arises from the use of three-

dimensional linear interpolation to find the velocities of particles at off nodal points (Yeung

& Pope 1988). An extensive study of how such errors affect the accuracy of the current

paths was carried out by comparing paths computed using linear interpolation with those

computed using exact spectral interpolation. For the near wall region considered in the

present study it was found that the mesh cell size was sufficiently small so that particle

paths generated by the linear scheme were essentially indistinguishable from those derived

from the exact formula.

Ensemble averages are estimated in the present work by taking averages over the sets

of paths. Clearly, this introduces a statistical error depending on both the sample size, i.e.,

the number of paths in the ensemble, as well as the degree of independence of the paths in

the data set. The large number of particles, 1000, used at each y leyel, is enough to insure

a relatively low variance in the average properties computed from the ensembles. The

final points of the paths are distributed on each y plane at the density of approximately

one for every fourth cell in the planar mesh. Including more paths computed over the

same time interval of the simulation, was found to have only minor quantitative affect on

the statistics. This indicates that such paths do not offer much in the way of additional
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statistically independent information.

To obtain an ideal set of paths for the current analysis, i.e., one whose averages would

be equal to the theoretically exact averages, requires having paths separated in time as

well as in space. In this way statistical information from the complete simulated velocity

field could be brought into the ensemble of paths. Unfortunately, practical considerations

preclude obtaining this kind of data. In particular, this would considerably magnify the

already formidable task of storing and retrieving the data contained in just one contiguous

set of 640 velocity records. However, by incorporating data sets from both walls of the

channel, as was done here, it was possible to augment the statistical independence of the

paths without great additional cost. The statistics for the combined set of data including

both the top and bottom of the channel are given here. These are not substantially

different from those taken from the separate data sets. Consequently, it is unlikely that

the results of the present study would be much different if a larger, more statistically

independent ensemble of paths were used.

4. Overview of Reynolds stress decomposition

According to the discussion in section 2, the decomposition of UV- given in equation (3)

will be useful only if r exceeds the mixing time. Consequently, it is necessary to check that

this condition is satisfied before considering the predicted values of the terms in (3). A plot

of the time history of the Ub-v. correlation normalized by UI-, at the different y locations,

is shown in figure 2. It is seen that of the six positions treated in the current study, Ub-v

essentially reached zero at the four points for which y+ > 12, while for y+ = 7.3, it was

reduced to less than 20% of its initial value. At the point closest to the wall, y+ = 3.8,

-was only approximately halfway to zero. Similar behavior was found regarding the

constancy of the remaining terms in (3). Away from the wall they were either constant

or nearly so, while near the boundary they were still evolving at r+ = 32. This suggests
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that the total simulation time of r+ = 32 is sufficient for complete mixing everywhere

except very close to the wall.

The subsequent results will make it clear that the fluid particle motions associated

with sweep events, i.e., u. > 0, v. < 0, commonly experience substantial decelerations as

they enter the near wall region. For such paths it is expected that u remains positive over

a significant time interval prior to to. In this case, a large contribution to the product

UbV& is likely which can explain the persistence of the b. correlation adjacent to the

boundary. Fortunately, because of the very small magnitude of the Reynolds stress at

Y+ = 3.8, the failure of UbIv to be close to zero at this point will turn out to be of only

minor consequence for the following discussion.

A numerical evaluation of the Reynolds stress decomposition given in (3) obtained

from the particle paths at all six locations is summarized in figure 3. The magnitude of

U-v is seen to be uniformly small across the region so that the decomposition of UI' into

the remaining terms in (3) is meaningful. Note that at y+ = 3.8, even though b, still

accounLs for a large fraction of V'V, it is very small relative to the peak magnitude of the

Reynolds stress distribution. This suggests that any conclusions about the physics of the

Reynolds stress which may be deduced from the figure will not be significantly affected if

a larger value of r+ were used near the boundary.

A striking feature of figure 3 is the behavior of the gradient transport term with respect

to the Reynolds stress itself. The former exceeds the latter in magnitude for y+ < 20,

and is less than it for the region y+ > 20. This result is consistent with the earlier study

(Bernard, et al. 1989a). Extrapolation of the curves in figure 3 toward the centerline

suggests that gradient transport will continue to diminish in importance with respect to
the total Reynolds stress as the central region of the channel is approached. Figure 3

shows that 02 in equation (3) is positive near the wall so that it counterbalances the

tendency of the gradient term to overestimate the Reynolds stress. Near y+ = 30, 02

changes sign so that beyond this point it acts in the manner of an additional source of
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Reynolds stress. Term 4) is observed to contribute positively to mY for y+ 5 12 while

it makes a somewhat constant negative contribution to Reynolds stress further from the

wall.

It may be concluded from figure 3, in agreement with earlier work, that the physical

effects accounted for by the terms 4I and OD2 constitute a significant aspect of the physics

of the Reynolds stress, and therefore cannot be neglected in favor of a simple gradient

transport model. To further the specific aims of the present study it is thus necessary

to delve more deeply into the physical processes represented by these terms. A step in

this direction was taken previously (Bernard, et al., 1989a,b) when it was established that

non-gradient transport effects are largely attributable to the motion of a small number

of exceptional particles traveling long distances during the mixing time. Here, many

refinements to this observation will be made as the connection between particle motions

and Reynolds stress is further mapped out.

5. Analysis of particle paths

For the purpose of developing a physical picture of the Reynolds stress it is helpful

to study the contributions which particular subgroups of paths make to the terms in (3).

It turns out to be especially useful to subdivide the paths according to both their initial

positions in the y direction and the quadrant in the u - v hodograph plane they are in at

their termination point. In the following, the paths will be considered according to these

two criteria applied either separately or together as the situation warrants.

Before considering the relationship between specific attributes of trajectories and the

results contained in figure 3, it is advantageous to examine some of the basic statistics of

the computed particle paths. In particular, the probability density function (pdf), p(y),

corresponding to the initial positions of the particles as measured from the wall, for each

of the six y locations, are shown in figure 4. These were computed by first evaluating
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the cumulative probability distribution function P(y) = p(z)dz, at a set of discrete

points, and then setting p(y) equal to the slope of a straight line fitted to P in the vicinity

of y. As expected, the least spread of initial states is for the paths which end at y+ = 3.8,

while the greatest is for those arriving at y+ = 36.6. At each y+ location the most

probable initial state is approximately coincident with the final state. However, the p(y)

curves are asymmetric about the most probable location with the longer tail extending

in the direction away from the channel wall. This suggests that the mean y location for

each ensemble of paths should be drifting toward the wall. Direct calculation reveals that

this is indeed the case.

Considerable insight into the dynamics of the wall region can be had by performing

a quadrant analysis of the curves in figure 4 along the lines discussed previously. Such

a breakdown of the particular curve in figure 4 at y+ = 12 is shown in figure 5. It

is seen that, as expected, Q2 events, i.e., particles for which u.,, v. are in quadrant 2

(u. < 0, v. > 0) of the hodograph plane, are most likely to have originated closer to the

wall than y+ = 12, while Q4 events are most likely to have approached the wall from

further away. Q2 and Q4 events are also seen to be much more numerous than Q1 or Q3

events. It may be observed that for all of the four groups of paths, there are many which

begin their travel from locations opposite to ones' expectation of where they should start

judging solely by the sign of v.. In other words, a significant fraction of the particle paths

change their direction over the mixing time.

An especially interesting feature of figure 5 is that a very high percentage, in fact, 76

% of the Q1 events undergo a change in direction. Visualizations of these paths along the

lines done in the earlier study (Bernard, et al. 1989b), shows that many of them follow

arcing trajectories in which they descend toward the wall very much like sweep motions,

but become reoriented upwards prior to time to. In general, these particles travel faster

than the local mean at y+ = 12 so that the source of a positive fluctuation, u., lies in

their origin in the high speed region further from the wall.
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As in the case of the Q1 events, figure 5 shows that slightly more than half, namely,

53 % of all Q3 events begin traveling outward from close to the wall and then change

direction back toward the wall. These also may be seen to be largely spiral motions in

which u. is negative due to the fluid particle's previous passage close to the wall. Taken

as a whole, it is seen that QI and Q3 particle trajectories give the appearance of being the

culminating behavior of sweep and ejection events, respectively, in which particles change

direction because of their association with the motion of vortical structures in the wall

region. It should be noted that a similar scenario was proposed by Brodkey, Wallace

Eckelmann (1974) in their interpretation of experimentally observed particle paths.

It may be concluded that the positive fluctuation u. associated with Q1 and Q4 events

signifies that the fluid particle is highly likely to have originated farther from the wall than

its final position. Similarly, u. < 0, occurring in Q2 and Q3 events, most often means the

particle path started in the slow moving region close to the wall. These general conclusions

also apply to the paths at locations other than y+ - 12, since the remaining curves in

figure 4 have quadrant breakdowns similar to that shown in figure 5.

6. Transport by fluid particle displacements

The computed trends in the gradient and 42 terms in figure 3 are a natural consequence

of the relationship between the particle motions occurring during the mixing time and

the properties of the mean velocity field. By exploring this connection, a considerable

amount can be revealed about the physics of momentum transport. The present discussion

coRsiders the gradient term together with the non-gradient process represented by 402,

since together they form the correlation v.(t'b - U). This term, as suggested previously,

corresponds mathematically to the physical process described by Prandtl in which u. is

treated as if it were created entirely by the mean velocity at point b being brought to

point a by the displacement of fluid particles.
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The association between the mean velocity field and the gradient and '02 terms can be

understood with the help of figure 6 containing a plot of U upon which is superimposed

tangent lines at the three points y+ = 3.8, 17.8 and 36.6. Consider the dynamics of typical

fluid particles causing momentum transport across the plane at y+ = 17.8. For a particle

having v. > 0, and y, < y+ = 17.8, i.e., that originated at a position b closer to the wall,

SU, will be negative. According to equation (2), Ub -U, can be decomposed into a

sum of contributions from the linear approximation to 1 through a, plus a higher order

correction. The relative positions of the curves in figure 6 at a hypothetical point y+,

situated somewhat to the left of y+, make it is evident that the part of 776 - 1. deriving

from the linear approximation to U will be negative, and will account for only a part of

the total difference, Ub -U.. The remaining contribution to Ub - U. comes from the

higher order term in (2) which may be seen to also be negative. Since the gradient term in

(2) is composed of the correlation of v. with the gradient part of 76 - "U., it follows that

particles with v. > 0, y+ < y+, tend to contribute less in magnitude to gradient transport

than they do to the overall local Reynolds stress. In addition, since 42 is formed as the

product of v, with the higher order term in (2), it will receive a negative contribution

from this kind of particle motion.

Now consider the equivalent situation, but for a particle for which v. < 0 and y' > y.+.

In this case Ub -U, will be positive. Examination of the curves in figure 6 just to the right

of y+ = 17.8 reveals that unlike the previous instance, the linear term in (2) will now tend

to be larger in magnitude than Ub - U., while the part of Ub - coming from the higher

order correction in (2) will counterbalance this by being negative. It thus happens that

for particles approaching the wall, it is expected that their contribution to the gradient

term in (3) will exceed in magnitude that of their contribution to the Reynolds stress,

while at the same time they contribute positively to 12.

In summary, in so far as the gradient term in (3) is concerned, particles moving away

from the wall tend to contribute less to it in magnitude than they do the local Reynolds

17



stress, while particles moving toward the wall tend to contribute more in magnitude

to it than they do to the Reynolds stress. For the term 02, outward moving particles

contribute negatively, i.e., so as to enhance the local Reynolds stress, while those moving

inward contribute positively, i.e., so as to reduce the total Reynolds stress. In the event

that a linear approximation to U is acceptable over the distance at which fluid particles

move over the mixing time, then the higher order term in (2) will be negligible and 02

can be expected to be zero. In contrast, the gradient term will contribute to Reynolds

stress in all circumstances, so long as dT/dy 6 0.

At this point it is possible to readily explain the behavior of the gradient and 02

terms shown in figure 3. First consider the region near the wall. It may be seen in

figure 6 that a linear approximation to "7 at y+ = 3.8 is excellent for particles traveling

outward towards Y+ = 3.8, while it is not particularly good for particles heading inward

to y+ = 3.8. In view of the previous discussion, it may be expected that the gradient

term will over-predict the Reynolds stress at this point since the Q4 particles traveling

to y+ = 3.8 from above make excessive contributions to gradient transport without a

compensating underprediction from outward moving particles. Similarly, the curves in

figure 6 at y+ = 3.8 suggest that the main contribution to 42 is from particles moving

to the wall, since the correction to the gradient approximation to U for outward moving

particles will be negligible. The net result is that 42 should be positive, as is shown to

be the case in figure 3.

An instructive view of the conclusions just reached is given in figure 7 containing a

plot of the pdf's associated with the gradient and 4 2 terms in (3) at the point y+ = 3.8, as

well as the pdf of particle displacement. The former curves, at a fixed y, give the fraction

of the total gradient and 42 terms, respectively, stemming from particles originating

near y and traveling to y+ = 3.8. It is evaluated in the same manner by which the

pdf of particle displacement was computed, namely, by differentiation of the associated

cumulative probability function, P(y). Since it is possible that particles originating from
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a particular location may tend to contribute opposite in sign to that of the net value of

the term, it cannot be ruled out that there are regions where p(y) is negative. In all cases,

however, the integral of p(y) over all y is unity.

Figure 7 reveals the remarkable extent to which a very large portion of the gradient

contribution to Reynolds stress, and almost the entire contribution to 02, come from the

small number of particles traveling to y+ = 3.8 from positions beyond y+ = 10 from the

wall. The most probable contribution to gradient transport is from particles originating

near y+ -z 17, yet, as shown in figure 6, the tangent line to 'U at y+ - 3.8 very poorly

approximates ' in this vicinity. The result, as was made clear in the previous discussion,

is that the gradient term will be too large in magnitude, and '2 will be positive.

At points further from the wall, such as y+ = 17.8, the local linear approximation

to *U is a poor representation of Ub for both outbound and in-bound particles traveling

significant distances. Figure 8 shows the pdf's for the gradient and 0z terms in (3) for

particles arriving at y+ = 17.8. As before, the dominant contribution to displacement

transport is from a small number of of particles traveling relatively long distances during

the mixing time. The pdf for the gradient term displays a characteristic profile in which

a local maximum occurs on either side of the terminal point. The greatest contributions

to gradient transport arise from particles traveling outward from y+ ; 10 and inward

from y+ ; 30 - 45. The inadequacy of a linear approximation to U at y+ = 17.8 to

account for these contributions is evident in figure 6. However, it may be expected that

the tendency toward overprediction of gradient transport by the inward moving particles

will be counteracted by an opposite effect due to the outward moving particles. Thus a

lessening of the magnitude of the gradient term with respect to the Reynolds stress should

occur. Figure 3 shows that, in fact, at y+ ;t 20 the gradient term begins to underpredict

the Reynolds stress.

The increasing importance of outward moving particles at y+ - 17.8 is made evident

by the pdf for 02. Here it is seen that these particles make a sizable negative contribution
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to 42 cancelling some of the positive contribution from inward traveling particles. This

explains the decrease in $2 for y+ > 12 evident in figure 3. At y+ t 30 the positive

and negative contributions to t2 fully balance so that it is zero. Beyond this point the

negative contributions from outward moving particles dominate and t2 becomes negative.

At y+ - 36.6, figure 6 shows that a situation somewhat opposite to that at y+ = 3.8

occurs. The pdf of the gradient term at y+ = 36.6 shown in figure 9 indicates that the

most probable contributions to gradient transport come from particles moving outward

from y+ - 18 and inward from y+ - 60. For the latter particles the linear representation

of 'U at Y+ = 36.6 is considerably better than for the former, so the gradient term can be

expected to fall short of the total Reynolds stress in magnitude. The negative value of t2

at y+ - 36.6 is reflected in the fact that its pdf curve, which is shown in figure 9, is now

positive for particles heading outward, and negative for ones moving inward, in contrast

to the situation at y+ = 17.8. It also may be concluded from figure 9 that the Reynolds

stress, away from the vicinity of the wall, depends on physical processes covering a very

substantial part of the channel.

Quadrant analyses of the gradient and 42 transport terms are presented in figures

10 and 11, respectively. Next to the boundary almost the entire contribution to these

processes is due to fluid particle motions terminating in Q4. Outside the immediate

wall region Q4 events continue to exert a major influence on both facets of displacement

transport, though this is mollified somewhat in that they contribute negatively to the

gradient and positively to the D2 terms. In contrast, the 'figures show that Q2 events

contribute negatively to both processes, and as will be shown below, come to dominate

displacement transport away from the wall. An interesting aspect of figure 10 is that Q1

events appear to be responsible for a sizable positive contribution to gradient transport.

For this to happen, since v.o> 0 for such particles, it must generally be the case that

t'U > 'U., so that y' > y+. In other words, a change in direction is implied in these

motions. The presence of many Q1 paths with this property was established previously.
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7. Transport by fluid particle accelerations

The behavior of 4 = V(U. - Ub) shown in figure 3 can also be interpreted in terms

of the basic properties of the fluid particle motions. Near the wall where it is positive,

a correlation is implied between events in which v. and U. - Ub have the same sign. A

quadrant breakdown of the acceleration transport term shown in figure 12 reveals that

the positivity of 01 near the wall is entirely due to Q4 events. For these paths v. < 0 so it

must often be the case that U. - Ub < 0 as well. In other words, the positivity of 41 near

the boundary is explained by the deceleration of many sweep motions heading into the

near wall region. The opposite situation, in which ejection events accelerate, also occurs

as will be seen below, though this is of less significance.

Since, according to figure 3, 4 changes sign at y+ : 12, the complete set of physical

processes underlying this term must be more complex than the simple scheme just pro-

posed. For example, the mechanisms cited to account for positive 01 cannot explain why

it is negative, since it is implausible to expect that either many particles leaving from

near the wall decelerate or that many particles approaching the wall accelerate. Figure

12 makes clear that the source of negative 61, near y+ = 15, lies in the motion of paths

terminating in Q1 and Q2. Since these events have v, > 0, to contribute negatively to

Q1 they must be decelerating. In view of the previous remarks, it appears to be highly

likely that a change in direction is involved in these paths. Figure 12 also shows that by

y+ = 36 Q3 and Q4 motions contribute negatively to 4D. In this case, there must exist a

number of particles which accelerate as they leave from near the wall, and then turn back

toward it so that they terminate with v. < 0.

Visualizations of the ten paths, out of the complete set of 1000 paths, contributing

most negatively to acceleration transport at y+ = 24.6 are contained in figure 13. The

trajectories are displayed in orthogonal projections from the side, top and end-on, as seen

by an observer moving at the mean speed at y+ = 24.6. The paths are plotted from a
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common origin and an equal spatial scaling is used in all coordinate directions. Paths

to the right of the z+ origin in the top two figures are traveling slower than the mean,

and paths to the left faster. Viewed end-on it is apparent that the particles terminate in

Q1 or Q2 so that they are all decelerating. It is also evident that they have undergone a

change in direction consistent with the previous discussion.

The paths in figure 13 tend to displace only a small distance in the wall-normal

direction over the mixing time. This is consistent with a plot of the pdf of 4i at y+ = 24.6

in figure 14 which shows that p(y) is at a peak at y+ = 24.6. This implies that the most

significant source of negative contributions to 4D is from paths which do not travel a large

distance normal to the wall. The regions in figure 14 where p(y) is negative are locations

where the instantaneous product v,(U, - Ub) tends to be positive. Clearly, these paths

contribute to 01 by either slowing as they approach the wall (y+ > 40), or accelerating

as they leave the wall ( y+ < 15), without an implied change in direction.

It is natural to wonder how the particles depicted in figure 13 are able to decelerate to

any great extent without having traveled a significant distance toward the fixed boundary.

A possible explanation is suggested by the fact that the paths display a clear spiral pattern,

as if they are convecting around the cores of vortex tubes tilted downstream at an angle

to the wall. In particular, the velocity field generated by such structures can be expected

to enhance the streamwise velocity on one side and diminish it on the other, so that fluid

traveling into such vortices from underneath would tend to decelerate. If these structures

form the legs of lifted-up horseshoe or hairpin vortices, then the events being considered

represent fluid being drawn into their centers from outside. A similar argument can be

provided to explain the acceleration transport generated by Q3 and Q4 events further

from the wall. In this case the fluid particles may be heading in an arc around the upper

part of the vortex cores.
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8. Summary of Reynolds stress physics

At this point a number of conclusions may be drawn about the kinds of physical

processes in turbulent flow which lead to the Reynolds stress. First of all, it is clear from

figure 3 that the gradient transport mechanism is a poor estimate of the total Reynolds

stress throughout the wall region. By all indications it will be even worse at points

further from the wall. Besides its inability to account for the Reynolds stress, it is also

inadequate for approximating the total dispacement transport term, v.(Ub - U.), of which

it is one part. In particular, the inappropriateness of a local linear approximation to U in

representing Ub insures at the outset that 42 cannot act as merely a small correction to

the gradient approximation to v.(Ub -U). It may be concluded that gradient transport

has no intrinsic meaning to turbulent diffusion, so that the subdivision of v.('Ub- U.)

into gradient and non-gradient parts serves only to obscure the physics of the Reynolds

stress.

The present study thus leads to the notion that it is advantageous to consider the

displacement transport process taken as a whole instead of divided into gradient and non-

gradient parts. Thus the decomposition of the Reynolds stress given in equation (7) is

preferable to that given in (3). This point of view is supported by figure 15 showing the

distribution of the separate terms in (7) across the channel together with the Reynolds

stress. It is evident that v,(Ub - U.) provides a much more credible approximation to

the total Reynolds stress than does the gradient term taken by itself.

A quadrant breakdown of the displacement transport term is shown in figure 16. The

dominant role of sweep, i.e., Q4 motions, is evident near the wall. Beyond approximately

Y- 18, as suggested previously, Q2 events involving the ejection of low speed fluid away

from th wall constitute the major source of displacement transport. According to the

figure the net effect of displacement transport is reduced somewhat by the action of Qi

and Q3 paths which have experienced a change in direction over the mixing time.
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Acceleration transport has been seen to be the result of two dissimilar mechanisms

with different consequences for the overall Reynolds stress distribution. Near the wall

it is manifested in the guise of slowing sweep motions and thus leads to a reduction of

the Reynolds stress. Further from the wall it acts as an additional source of Reynolds

stress by a mechanism consisting of the deceleration of particles traveling in spiral paths

first towards and then away from the wall. At more distant points the opposite case

occurs in which accelerating particles travel away from and then back toward the bound-

ary. Figures 8, 9 and 14 make the important point that the paths most responsible for

displacement and acceleration transport are largely disjoint from each other. The former

tend to originate at locations considerably above or below the termination point while

the latter begin and end near the same y level. However, visualizations of the paths most

responsible for displacement transport, in agreement with the previous study (Bernard,

et aL. 1989b), generally show spiral motions covering significant vertical motion, as would

be associated with vortical structures more or less aligned with the flow. This together

with the previous assessment of the causes of acceleration transport suggests that the two

differing sources of turbulent momentum transport have a common origin in the dynamics

of largely streamwise vortices in the turbulent boundary layer.

9. Implications for Reynolds stress modeling

Having established a comprehensive picture of the sources of momentum transport in

the previous section, it is of interest to now consider some of the implications that this

may have on schemes for predicting the Reynolds stress. It has already been remarked

that the simple gradient law is untenable as a model of the Reynolds stress. Now it will

be shown that the properties of displacement transport discussed previously suggest a

natural representation of displacement transport in terms of the global properties of the

mean velocity gradient. This result is consistent with general observations which have
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been made concerning the non-local dependence of Reynolds stress on the mean velocity

field (Lumley 1983).

A model of the correlation v(Ub - "T) may be developed from the probability of

particle displacement previously considered. Thus, at a particular point y, fluid particles

have the probability, say py(r)Ar, of arriving at point y from the neighborhood I r - y 1<
Ar/2 during the mixing time r*(y). For each of these particles, FTb - 'U. T:(r) - 17(y).

In addition, these particles travel the distance r - y in the time r*(y) so that it is natural

to suggest that on average v.. -(r - y)/T*(y). Introducing a factor cr(r) it may be

asserted that

- - (r -y)ot(r)--(y)

In this case the contribution to v.(Tb - _',) from particles traveling from a small neigh-

borhood Ar of r to y in time r7(y) is given approximately by

(r -y) -_.' ( TT(r) - U(y)a 1(r)p(r)Ar.

Summing this over all r positions gives the result

Va(Tb - )(Y)=(r - y)(U(r) - (y))a,(r)py(r)dr. (8)

In view of the fact that F.- 0 in channel flow, it must be the case that

0h(r - y)a,(r)p,(r)dr =- 0 (9)

if the current model is to be self-consistent. This equation serves as a constraint on o(r).

If ay(r) = 1, then (9) is equivalent to the statement that the first moment of p,(r) is zero.

However, none of the curves in figure 4 have this property, since as mentioned previously,

there is a mean drift of the particles toward the wall. It follows that ck(r) # 1, and to

balance the asymmetry of p,(r) it is likely that a,(r) < 1 for r > 0.

To develop a one point approximation to the Reynolds stress from (8) one can sub-

stitute for ?'(r) -U(y) the first N terms in its Taylor series expansion about y. This

25



yields
________ +1 o (y) d"Vv.(,- V(y) =_"(10)

where arn(Y) f(r - y)na,(r)py(r)dr. When N = 1 this simplifies to a gradient transport

law in which vT in (6) is approximated by a 2(y)/r(y). The previous results make it

quite clear that this degree of approximation is not acceptable. In addition, the large

support of p,(r) evidenced in figure 4 suggests that N must be relatively large if (10) is

to capture the non-gradient contribution. Test calculations of the first 5 terms have been

made using the particle path data which showed that (10) could not be safely truncated

at this level. This suggests that it is not possible to develop a practical one-point formula

for approximating the Reynolds stress.

An instructive step which may be taken in simplifying (8), which also preserves its

global character, is to incorporate into it the identity

7(r) - U(y) (s)ds. (11)

After reversing the order of integration it follows that

v( -Ou )(Y) = - ( hy (r)F,(r)dr (12)

where { ~(y - s)cxy(s)py(s)ds 0 5 r y
fh(s - y)ac(s)py(s)ds y < r < h

may be regarded as a function which weights the contribution of the mean velocity gradient

to the Reynolds stress in a region around y. Figure 17 contains a plot of Fy(r) for each

of.the six y levels, computed by assuming that cz(r) is unity for r < 0 and equal to a

constant less than one for r > 0. The value of the constant is chosen so as to insure

that (9) is satisfied. The computed values of F,(r) graphically illustrate that the local

Reynolds stress depends on flow conditions over a wide spatial range.

Beyond the use that (12) has in concretely expressing the physics of displacement

transport, it also has potential benefit in pointing the way toward a practical closure
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scheme for the Reynolds stress. Clearly, a number of important issues still need to be

resolved before the latter goal can be achieved. In particular, it is necessary to better

understand the parameters affecting the function Fy(r) so that its form in general flows

could be predicted. It also must be recognized that it is necessary to account for the

contributions of acceleration transport to the Reynolds stress. These important issues

may be treatable by closely examining how vortical elements in the turbulent boundary

layer specifically affect the movements of fluid particles.

10. Conclusions

The Reynolds stress has been shown to have its origin in fundamental processes involv-

ing the displacement and acceleration of fluid particles. The former, which is the more

significant process of the two, arises from the tendency of momentum to be transported

unchanged from one level to another by the random motion of fluid elements. Generally,

displacement transport is the result of relatively small numbers of particles traveling long

vertical distances in the mixing time. These paths appear to be a manifestation of the

burst and sweep events usually associated with the dynamics of vortical structures in the

wall region. Due to the inappropriateness of a linear approximation to the mean velocity

field over the range traveled by fluid particles during the mixing time, displacement trans-

port was found to be poorly represented by a gradient law. However, as a consequence of

its definition, the displacement transport mechanism was shown in (12) to have a natural

representation in terms of the global distribution of the mean velocity gradient. This

result may be of some advantage in the design of improved Reynolds stress models.

The physical process which has been labeled acceleration transport is a consequence of

two basic phenomena associated with the change in streamwise velocity of fluid particles.

Near the wall this primarily consists of the deceleration of fluid particles contained in

sweep events by the action of viscous and pressure forces. This process acts to reduce
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the total Reynolds stress. Further from the wall Reynolds stress is generated when fluid

particles decelerate while spiraling toward and then away from the wall. In addition, the

inverse process may occur in which particles accelerate while heading away from and then

toward the wall. For these motions the net vertical displacement of the fluid particles is

relatively small.

The fluid particle motions most closely connected to the displacement transport mech-

anism appear to be largely disjoint from those occurring in acceleration transport. An

important exception is the decelerating sweep events near the wall which contribute sig-

nificantly to both modes of transport. In spite of the differences between the two sets

of paths, a common ground between them may lie in the fact that they appear to repre-

sent different aspects of the motions associated with vortical structures in the turbulent

boundary layer. This connection with the structural aspects of turbulent flow will be pur-

sued further using three-dimensional animated visualizations of the fluid particle paths.

An understanding of the particular effects of vortices on particle motions may suggest

a means for bringing formula (12) to a practical level and for modeling the acceleration

transport contribution to Reynolds stress.

The Lagrangian approach pursued here may be applied to the analysis of a broad

range of physical processes in turbulent flow. In future work concerned with momentum

transport, it is intended to study the relative contributions that pressure and viscous

forces make to acceleration transport and to investigate the nature of the Reynolds stress

in the central region of the channel. It is also planned to apply similar analyses to studies

of vorticity transport and scalar diffusion.

The assistance of Dr. Richard Leighton in the development of the direct numerical simu-

lation code is greatly appreciated. Support of P. S. Bernard for this study was provided in

part through an ASEE/Navy Summer Faculty Research Fellowship at the Naval Research

Laboratory, Washington, D. C.
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Fig. 2 - Time development of ubv. correlation for each ensemble of paths. Curves (a) - (f) correspond to
y+ = 3.8,7.3,12.0,17.8,24.6 and 36.6, respectively.
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